skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abrikosov, Igor A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate detection and measurement of electron paramagnetic spin resonances (EPR) of iron defects in β Ga 2 O 3 utilizing generalized ellipsometry at frequencies between 110 and 170 GHz. The experiments are performed on an Fe-doped single crystal in a free-beam configuration in reflection at 45 and magnetic fields between 3 and 7 T. In contrast with low-field, low-frequency EPR measurements, we observe all five transitions of the s = 5 / 2 high-spin state Fe 3 + simultaneously. We confirm that ferric Fe 3 + is predominantly found at octahedrally coordinated Ga sites. We obtain the full set of fourth-order monoclinic zero-field splitting parameters for both octahedrally and tetrahedrally coordinated sites by employing measurements at multiple sample azimuth rotations. The capability of high-field EPR allows us to demonstrate that simplified second-order orthorhombic spin Hamiltonians are insufficient, and fourth-order terms as well as consideration of the monoclinic symmetry are needed. These findings are supported by computational approaches based on density-functional theory for second-order and on ligand-field theory for fourth-order parameters of the spin Hamiltonian. Terahertz ellipsometry is a way to measure spin resonances in a cavity-free setup. Its possibility of varying the probe frequency arbitrarily without otherwise changing the experimental setup offers unique means of truly disentangling different components of highly anisotropic spin Hamiltonians. Published by the American Physical Society2024 
    more » « less